当前位置:首 页 -> 研究进展
Journal of the American Chemical Society 2023, 145, 9, 5203-5210.
日期:2023-03-08,点击:1512

Monolayer-Assisted Surface-Initiated Schiff-Base-Mediated Aldol Polycondensation for the Synthesis of Crystalline sp2 Carbon-Conjugated Covalent Organic Framework Thin Films


Ke Wang#, Haoyong Yang#, Zhongquan Liao, Shengxu Li, Mike Hambsch, Guangen Fu, Stefan C. B. Mannsfeld, Qi Sun, and Tao Zhang*

J. Am. Chem. Soc, 2023, 145, 9, 5203-5210.

ABSTRACT: sp2 carbon-conjugated covalent organic frameworks (sp2c-COFs) with superb in-plane π-conjugations, high chemical stability, and robust framework structure are expected to be ideal films/membranes for a wide range of applications including energy-related devices and optoelectronics. However, so far, sp2c-COFs have been mainly limited to microcrystalline powders, and this consequently hampered their performances in devices. Herein, we report a simple and robust methodology to fabricate large-area, free-standing, and crystalline sp2c-COF films (TFPT–TMT and TB–TMT) on various solid substrates (e.g., fluorine-doped tin oxide, aluminum sheet, polyacrylonitrile membrane) by self-assembly monolayer-assisted surface-initiated Schiff-base-mediated aldol polycondensation (namely, SI-SBMAP). The resultant sp2c-COF films show lateral sizes up to 120 cm2 and tunable thickness from tens of nanometers to a few micrometers. Owing to the robust framework and highly ordered quasi-1D channels, the sp2c-COF membrane-based osmotic power generator presents an output power density of 14.1 W m–2 under harsh conditions, outperforming most reported COF membranes as well as commercialized benchmark devices (5 W m–2). This work demonstrates a simple and robust interfacial methodology for the fabrication of sp2c-COF films/membranes for green energy applications and potential optoelectronics.

Link: https://pubs.acs.org/doi/10.1021/jacs.2c12186